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Abstract

In this work, we present a multi-resolution data man-
agement scheme for efficiently storing and diffusing infor-
mation, which is originating from sensors and augment-
ing mobile applications. The proposed mechanism exploits
the discrete wavelet transform properties for providing a
location-dependent data management scheme, which alle-
viates the constraints on the storage resources needed for
running context-aware mobile applications.

The data management scheme has been implemented and
evaluated by means of numerical simulations.

1 Introduction

The increasing pervasiveness of mobile devices is en-
abling totally new networks and mobile applications, where
information is diffused with no need for dedicated network
infrastructure by employing epidemic-like information dis-
semination techniques [5, 7, 16, 3]. By taking advantage
of proximity communications, any communication oppor-
tunity, or “contact” [7], is exploited for exchanging infor-
mation. Mobile nodes contributing to the diffusion of in-
formation may range from cars [16], to people [7], or buses
[3]. Such enlarged networking possibility is enabling a wide
range of innovative mobile application scenarios such as
vehicular sensor networks [15], where sensed data is dis-
tributed by means of local communications among cars,
or distributed context provisioning, where information is
shared among mobile nodes in an ad-hoc fashion [20].

As the number of mobile users increases, and more rich con-
tent (i.e., images) enters the application scene [21], in order
to apply such techniques, it becomes imperative to make a
parsimonious use of the limited resources of mobile nodes,
i.e., storage and battery. Hence, efficient mobile data man-
agement techniques need to be devised in order to control
such an epidemic diffusion of data.

In this work, we consider an application scenario where
mobile nodes are running context-aware applications [20].
The information, which is contributing to the creation of
the surrounding context [12], is originating from sensors
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embedded in the environment, and is exchanged by mobile
nodes whenever in mutual communication range. Typically,
context-aware applications require fine grained data on the
surrounding environment, and only a coarse approximation
of remote regions. It is therefore a natural choice to man-
age the information in such a way that data originating from
nearby sensors is kept (and stored) at full resolution, while
information originating from remote sensors is compressed
by reducing its resolution. This multi-resolution property
is achieved by exploiting the characteristics of the Discrete
Wavelet Transform, which is applied to the stored informa-
tion. The benefits of the proposed approach are twofold:
first, it becomes possible to trade off the accuracy of the in-
formation for the required storage resources (i.e., memory
allocation required on mobile devices for storing the context
information) depending on the specific application scenario;
second, by allowing a compact representation of the stored
information, it becomes possible to apply epidemic-like dis-
semination mechanisms for diffusing data among mobile
nodes.

The remainder of this paper is organized as follows. In
Sec. 2, the motivation of this work, together with a high
level description of the proposed data management scheme,
are presented. This section includes also a brief summary
of the most significant work in this area. Sec. 3 provides a
short overview of wavelet techniques. In Sec. 4, the multi-
resolution data compression scheme is detailed in the case
of sensors measuring a random field. Sec. 5 presents the
multi-resolution data management scheme, and evaluates
it through extensive numerical simulations. Finally, Sec. 6
concludes the paper pointing out some promising directions
for future work.

2 Overview and Related Work

The considered application scenario consists of mobile
users moving around and running context-aware applica-
tions. Contextual information is originating from sensors
embedded in the environment, and is gathered by mobile
nodes when in the mutual communication range of sensors.
We are therefore considering a network scenario where the
architecture has 2 distinct tiers [5]. The lowest layer is con-
stituted by miniaturized devices embedded in the environ-
ment; the task of such sensor devices is to measure a physi-
cal phenomenon upon demand and to transmit the collected



information to mobile nodes within radio range. Opposed to
sensor nodes, the other layer is made by mobile users, which
carry with them personal handheld device, where context-
aware services are running. Such services are fed with in-
formation originating from sensors and dynamically build
what is usually referred as the context for user-situated ser-
vices [14].

Furthermore, in order to diffuse environmental informa-
tion with no need for dedicated network infrastructure, epi-
demic information dissemination techniques are employed
[5,7, 16]. A central issue in order to apply such techniques,
anyhow, is to make a parsimonious use of the limited re-
sources of mobile nodes, i.e., storage and battery. For this
scenario, the original contribution of this paper is an en-
tire location-dependent degrading data management model,
which operates a wavelet-transform of data with a variable
compression ratio (and thus memory allocation), depend-
ing on the current location of the mobile user. This lets
us trade off accuracy of the information for the resources
needed to store it. Notice that this is a reasonable trade-off,
since context-aware services are expected to require precise
information on the surrounding environment, and a brief
summary of outer regions.

The same degrading storage model is then exploited for
efficiently exchanging the stored information between two
mobile users encountering on-the-move.

2.1 Related Work

Wavelet techniques have been widely adopted in image
and audio processing for dynamically varying the resolution
and compression of data, or for efficiently denoising sig-
nals. As an example, the wavelet transform is the basis of
the video MPEG and image JPEG standards [17, 26]. The
wide adoption of JPEG standard is a testament of its suc-
cess. A similar approach is at the basis of the JPEG2000
[22] standard, which varies the applied wavelet decomposi-
tion depending on the target compression ratio.

Wavelets technique have being recently considered in the
area of Wireless Sensor Networks for providing in-network
wavelet-based aggregation of information originating from
sensors [13]. In response to sink queries, only a com-
pressed aggregate information is sent. Since the wavelet
decomposition preserves the properties of the original sig-
nal (i.e., trends, peaks, average, etc.), the sink can succes-
sively ask for detailed information only from the subset of
sensor nodes that presented interesting data in the aggregate
response. This results in a significant reduction of data traf-
fic circulating in the network and, thus, in an extension of
the network life-time. The work of [13] was successively
extended by [24], where a wavelet transform, specifically
tailored to non-regular deployments of sensor nodes, is de-
fined.

3 Wavelets Decomposition

Wavelet analysis represents a powerful tool to obtain
a compact and highly flexible representation of signals.
Wavelet representation offers significant advantages over,

e.g., Fourier series analysis, thanks to its capability of carry-
ing a joint time-frequency representation of the considered
signal [10, 8]. A wavelet transform consists in decompos-
ing an input signal over a set of basis of wavelets, which
are functions with a compact support (i.e., they are defined
over a finite and convex interval) and are oscillatory (i.e.,
their integral over the support is zero), from which it comes
the name “wavelets”, small waves.
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Figure 1. Wavelet decomposition in the frequency
domain.

The Discrete Wavelet Transform (DWT) is the mostly
used practical tool in wavelet applications. The DWT
uniquely associates a signal (square-integrable over a n-
dimensional space R™) to a sequence of coefficients, rep-
resenting the projections of the signal over the basis of R™.
This operation is called wavelet series decomposition. De-
composing a signal over a wavelet basis corresponds to cut
the original signal in different pieces and analyze each piece
separately. As depicted in Fig. 1 for the frequency domain,
each piece is cut by means of a fully scaled and modulated
window, which is applied over the signal to be transformed.
This is also referred in the literature as Multi-Resolution
Analysis (MRA) [10]. Representing the full original sig-
nal information would require an infinite number of wavelet
functions (and coefficients), thus being able to analyze the
original signal over the full range of frequencies and for
all its time duration. In order to overcome this problem,
wavelet decomposition is conducted down to a certain fre-
quency f*, whereas all the lower frequencies are “wrapped
up” in a trend component obtained by applying a low-pass
filter. The described process is briefly summarized in Fig. 1.

The k — level multiresolution analysis of an input signal
f can be synthetically summarized as follows:

f— AF 4+ DF + .. 4+ D?>+ D', (D)

where AF represents the trend component of the k-MRA,
while D" the detail component of the ¢ — th level of de-
composition. It is important to notice that it is possible to
reconstruct perfectly the trend coefficients at level k£ — 1 by
applying the inverse DWT to A* and DF. Tt follows that it is
possible to reconstruct perfectly the original signal starting
from (1).

A similar approach applies to the 2-dimensional case. In
this case, the 1-level wavelet decomposition of an input sig-
nal f can be summarized as follows:
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where (a) LL is computed by calculating the trend along
the rows of f, followed by computing the trend over the
columns; (b) H L is the subimage computed by calculating
the trends along the rows, followed by computing the fluctu-
ations along the columns; (¢) L H is the subimage computed
by calculating the trends along the columns, followed by
computing the fluctuations along the rows; (d) HH is the
subimage computed by calculating the fluctuations along
the columns, followed by computing the fluctuations along
the rows.

In the rest of the paper, we will use, for our numerical re-
sults, the Haar wavelet [8]. The Haar wavelet is indeed the
simplest wavelet function, and enables a rapid implementa-
tion while capturing all the advantages of DWT.

4 Compressing a Random Field
4.1 Problem Formulation

Let us associate the surrounding context to a physical
phenomenon to be monitored. This physical phenomenon
is modeled as an isotropic random field X, defined on
a suitable probability space {Q, F,P} [23]. Assuming a
two-dimensional space, the process X can be written as
X(z,y,t), (x,y) representing a location and ¢ € [0, +00)
the time index.

We assume the Space/Time Random Field (S/TRF) X to
be stationary and ergodic, which eliminates the possibility
of any spatial or temporal trend. While this assumption may
look restrictive, it is generally possible to separate the trend
component from the stationary one, and deal with them sep-
arately. In this work, we will concentrate on the stationary
component, which accounts for the variability of the physi-
cal phenomenon to be monitored.

Let us assume N? sensors to be deployed in a regular
fashion (so that their topology forms a grid) over an L x L
square playground, as depicted in Fig. 2 for N = 5. With-
out loosing in generality, let us further assume N to be a
power of 2. The complete sensor status, representing the
contextual information, is stored in the Sensor Map (SM), a
square matrix of size NV x N:

3171 32’1 SN,l
sM={ : 1 i |0

SI,N S2,N ... SN,N

where s; ; represents a sample of the random field at posi-
tion (7, j) over the N x N square grid. As we are not inter-
ested in monitoring historical trends of data, we neglect for
the moment the temporal domain and simply assume that a
value of the sensor map corresponds to the most recent read-
ing from the corresponding sensor. We are now interested
in understanding how well DWT can be used to compress
the SM matrix.

For the sake of simplicity, we limit our analysis to the
case of the field X constituting a Gaussian random field
with zero mean and unit variance. The process X is there-

2,1

N1

Figure 2. Example of grid deployment of N? = 25
sensors over a L X L square playground.

fore completely specified (in the statistical sense) by its co-
variance matrix K. !.

As it is commonly assumed for environmental processes
[23], we adopt separable space-time models, so that for two
locations s, s’ and two time epochs ¢, ¢’ the process normal-
ized covariance can be written as:

p(S,t;slvt/) = pl(svsl)pQ(t7t/)7 (4)

where p1 (s, s’) and pa(t,t') are the normalized covariance
of the spatial and temporal components, respectively. Fur-
ther, we have assumed that the spatial component of the co-
variance follows an exponential (isotropic) decay:

p(C) = exp <—§) : (5)

where ( is the (Euclidean) distance between two points on
the grid and the parameter A describes the rate at which cor-
relation varies. The parameter A is usually referred to as the
“correlation length” or “correlation scale” of p. We assume
also to sample the temporal component of (4) with a suffi-
ciently large period, so that we can consider the space/time
random field as a stochastic image, where time is seen as a
quality index of each spatial component in terms of fresh-
ness of data.

We have used stochastic simulations [2], [11] for gen-
erating alternative, equally probable, realizations of the
space/time random field. By adopting a grid topology for
the sensors, each realization represents a possible stochastic
image of the space/time distribution of the random field, and
satisfies the constraints imposed on the covariance model.

Varying the correlation length results in a different en-
tropy [9], and, thus, in a different compressibility of the
stochastic image. The entropy decreases while increasing
the correlation length [9].

It is worth recalling that the gaussian RF presents the highest entropy
of any random field with zero mean and covariance matrix K [9]. Hence,
since we are interested in compressing the SM and since to lower entropies
correspond a better compressibility, the gaussian assumption represents an
upper bound.



4.2 Compressing the Random Field
Through Standard Wavelet Tech-
niques

An important property of the wavelet transform is the
compaction of energy. Although the wavelet decomposi-
tion maintains the total energy of the original signal, typi-
cally, the trend component accounts for a large percentage
of the energy of the transformed signal. This results in the
magnitude of its coefficients being significantly larger than
the magnitude of the detail ones.

We now move our attention to the repartition of energy
between the trend and detail components for various lev-
els of decomposition. Varying the level of decomposition
consists in stopping the iterative DWT decomposition at a
certain level k. As an example, in Fig. 1 we could stop the
decomposition at the first iteration, with the detail compo-
nent obtained with a 8 B band-pass filter and the trend with

a % + 2B low-pass filter, or further iterate the process to
deeper levels.

Let us assume 64 x 64 sensors to be regularly distributed
over a 1280 x 1280 m? square playground, and the ran-
dom field to be characterized by a correlation lenght A =
ND; = 1280 m. In Fig. 3, we reported the repartition
of energy for various levels of decomposition. The results
are obtained averaging 50 simulations. As it is intuitively
clear, most of the energy is concentrated in the trend com-
ponent. This effect is particularly evident for low decompo-
sition levels. When we attempt to squeeze the energy into
ever smaller time intervals (higher band-pass filters) some
energy inevitably leaks out.

Details

Decomposition Level

Figure 3. Energy repartition between the trend and
details components at various decomposition levels,
in the case of 64 x 64 sensors regularly distributed
over a 1280 x 1280 m? playground, and a random
field with correlation lenght A = 1280 m.

In general, wavelet-transformed images are then com-
pressed by means of Thresholding Schemes, which consist
in comparing each DWT coefficient with a fixed threshold
T}, and in keeping only the coefficients above the defined
threshold, while setting to 0 the remaining ones 2. The pro-
cessed signal results then composed by a high number of Os,

2We are not considering soft thresholding schemes, since they are typ-
ically applied to image denoising, rather then image compression.

and can be compressed by means of standard compression
methods (i.e., run-length encoding, etc.) [25, 19]. Obvi-
ously, by selecting a large threshold value, a high compres-
sion rate is achieved at the cost of a corrupted reconstructed
image. The main objective in wavelet compression is se-
lecting a good threshold value, depending on the specific
application scenario considered, in order to ensure either a
given compression rate, or a chosen quality of the recon-
structed image.

We now consider the percentage of detail coefficients
that are set to zero at each level of decomposition by apply-
ing the described thresholding scheme. We select a thresh-
old so that at least 95% of the energy of the original sensor
map is kept, applying the method in [25]. In Fig. 4, the
number of zeros in the case of a 64 x 64 sensors regularly
deployed over a 1280 x 1280 m? playground are presented
in the case of a correlation length of 320 m and 1280 m. Re-
sults are obtained averaging 50 simulations. Clearly, differ-
ent correlation lengths lead to different compression ratios,
since the correlation length influences the resulting entropy
of the random field. As we can see from Fig. 4, the first lev-
els of decomposition are characterized by an extremely high
percentage of null values in the detail coefficients and this
percentage increases with larger deployments (i.e., larger
values of IV) or higher correlation lengths [6].
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Figure 4. Percentage of zeros in the detail compo-
nents applying adaptive thresholding, in the case of
64 x 64 sensors regularly distributed over a 1280 x
1280 m? playground, and a random field with corre-
lation lenght A = 1280 m..

4.3 The Multiresolution Data Compres-
sion Scheme

From the previous analysis it possible to conclude that,
when compressing a sufficiently high correlated random
field and for sufficiently large deployments (N > 1) [6],
only a minimum amount of energy of the original signal
will be lost when removing the detail coefficients. This is
particularly true for low level of decomposition (Fig. 4).
This suggested us an alternative approach that we termed
Multi-Resolution Data Compression (MRDC) scheme. The
MRDC scheme consists in removing all the details coeffi-
cients up to a certain level of decomposition, and in main-



taining only the trend component of the DWT transform.
The level of decomposition reflects the compression ratio
of the sensor map (and therefore the memory required for
storing the compressed image), since the deeper is the de-
composition level, the more are the coefficients that will be
dropped. As an example, let us consider an N x N im-
age, with IV power of 2. The lowest compression ratio can
be obtained by performing a single level DWT of the SM,
and maintaining the resulting trend component: the trend
matrix is a % X % matrix. Conversely, the highest com-
pression ratio can be obtained by iterating the DWT down
to the maximum decomposition level, which is logs (V') for
N power of 2. In this case, the trend matrix consists of a sin-
gle coefficient, which represent the maximum compression
achievable with the MRDC scheme. Obviously, the deeper
the level of decomposition, the higher the compression rate
at the cost of a lower quality of the reconstructed image.
The benefits deriving from the MRDC mechanism are
twofold. First, it allows for a great level of control over the
memory resources allocated for storing the compressed im-
age. In fact, at each level of decomposition the trend com-
ponent has a well defined number of coefficients; second, it
presents an extremely low-complexity implementation, and
can therefore run on processing-constrained devices . This
allows us to easily trade off information accuracy with re-
sources, depending on the specific application scenario.
Ideally, the processed signal is then transmitted and re-
constructed on the receiver side. The reconstructed signal

will be an estimate S of the original stochastic image S. In
fact, while reconstructing the signal, all the details compo-
nents that were previously removed are set to zero, and this
obviously results in a degradation of the reconstructed im-
age. In order to quantify this degradation we considered the
distortion D, defined as:

N

1 .
D=3 ZO Z(Sm —8ij)%,
=0 j

=0

(6)

where S; ; and §i,j are, respectively, the elements (7, j) of
the original and reconstructed sensor map, and N is the size
of the SM matrix. In Fig. 5, the distortion of the recon-

structed signal S of a 64 x 64 sensors image, with sen-
sors equally spaced by Dg = 20 m and distributed over
a 1280 x 1280 m? playground, is depicted. The setting
encompasses a variable correlation length \ and a variable
level of compression Compr Lev. Results are obtained run-
ning 50 simulations and considering the corresponding 98%
confidence interval. The Compr Lev represents the decom-
position level down to which details coefficients are dis-
carded. As it is intuitively clear, for any fixed correlation
length A the distortion increases while increasing the com-
pression level of the image (thus reducing the memory re-
sources needed for storing the SM), since we are discarding
a higher number of DWT coefficients. Additionally, for any
given compression level, increasing the correlation length

3The DWT decomposition is typically implemented by means of an
iterated Filter Bank which, thanks to its low-complexity, can be easily im-
plemented on resource-constrained devices.
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Figure 5. Distortion of the reconstructed stochastic
image varying the compression ratio.

results in a higher correlation of the sampled random field
and, thus, in a higher significance of the trend (low-pass)
component. This affects the capacity of the Haar DWT to
represent the RF, and is reflected in a reduced distortion of
the reconstructed signal.

5 A Multi-Resolution Data Management
Scheme

5.1 Scheme Description

Let us assume N2 sensing devices to be uniformly de-
ployed over a L x L square playground, with the aim of
providing a precise estimation of the random field X when
asked to. Let us further assume the playground to be logi-
cally divided into 1" x 1’ square tiles, each tile containing
l = ]%’—j sensors. M mobile nodes are moving over the
playground and reading sensor nodes when in mutual com-
munication range. Each sensor reading is constituted by the
tuple: < value,time, pos >, with value being the reading
of the sensor, t¢me the relative reading time 4 and pos the
sensor location 3. The gathered information is then stored
in the internal memory of the mobile users’ portable device.

Multi-Resolution Data Management Scheme

In order not to exhaust the limited storage resources of mo-
bile nodes, information is managed according to a Multi-
Resolution Data Management (MRDM) scheme, which im-
plements a lossy and location-dependent degrading stor-
age model. Starting from its current position, each mo-
bile node builds a quad-tree hierarchy of the stored infor-
mation, compressing different tiles along the quad-tree with

“This does not require all nodes to be synchronized to a common clock,
since we are only interested in storing the reading age, which can be cal-
culated at any time instant by subtracting the timestamped value from the
local clock.

SSensors’ position can be programmed at installation phase, or, given a
limited sensors communication range, simply assumed as the mobile user
position.
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